1. For a number to be divisible by 5 and 4 , the last digit has to be 0 .

For a number to be divisible by 3 the sum of all the digits has to be a multiple of 3 .
For a number to be divisible by 4 the last two digits have to form a multiple of 4 .
So far, four out of the six digits add up to $2+8+9+0=19$
Since the number is to be as small as possible, the next multiple of 3 is 21 , and since $21-19=2$, the digit 2 has to occupy the Tens place, and 0 has to occupy the Hundreds place. The last two digits (20) is a multiple of 4.
Hence the 6-digit number is $\underline{289} 020$.
2. Since the largest common factor is 12 , then A and B are multiples of 12 .

Since $180=12 \times 15$, and $15=1 \times 15$ or 3×5, then the two numbers could be
either $A=12 \times 1$ and $B=12 \times 15$
or $A=12 \times 3$ and $B=12 \times 5$
However, since the larger number is not a multiple of the smaller, then the two numbers must be $12 \times 3=\underline{36}$ and $12 \times 5=\underline{60}$.
3. The original figure has the same perimeter as the rectangle with the dotted lines.

Length of rectangle $=12 \mathrm{~cm}$
Breadth of rectangle $=2+8=10 \mathrm{~cm}$
Perimeter $=2 \times(10+12)=\underline{44 \mathrm{~cm}}$

4. The shorter programme is News.

The longer programme is Discovery Science.
5. Combining the two shaded parts will make a quadrant.

Hence $\frac{1}{4}$ of the circle is shaded.

6. Change $\frac{a}{b}=\frac{3}{4}$ and $\frac{b}{c}=\frac{5}{6}$ to $\frac{a}{b}=\frac{15}{20}$ and $\frac{b}{c}=\frac{20}{24}$, then $\boldsymbol{b}=20, \boldsymbol{a}=15$ and $\boldsymbol{c}=24$,

Therefore, $\quad \frac{a}{c}=\frac{15}{24}=\frac{5}{8}$
7. From Fig. A and B, balls 1, 2, 7 and 8 are not the lighter ones. According to Fig C then, one of the lighter balls must be 4 and the other must be either 3 or 5 . However, if the lighter balls are 3 and 4, as in Fig A, then balls 7, 8 and 5, 6 (in Fig B) should be been balanced and not tilted. Hence, ball 3 is not the lighter ball. Therefore, ball 5 must be the other lighter ball. The two lighter balls are balls 4 and 5 .
8.

9.

10. Statement C:

The area is 4 times the original area and the perimeter is doubled.

11. To form the largest possible answer, the first four blanks must form the largest number while the last four blanks must form the smallest number.

The first four numbers must form the largest number:
 $\times 1$
 $\underbrace{+}$ \square $11]$

The first 2 blanks should form the largest number; the $3^{\text {rd }}$ and $4^{\text {th }}$ blanks should also be the next largest possible.

The $1^{\text {st }}$ blank should be the largest and the $2^{\text {nd }}$ blank should be the smallest \rightarrow so 9 and 1 . The $3^{\text {rd }}$ and $4^{\text {th }}$ blanks should be the next largest numbers \rightarrow so 8 and 7 .

The last four numbers must form the smallest number: \square \times \qquad $+\square$ \square The $5^{\text {th }}, 6^{\text {th }}$ and $7^{\text {th }}$ blanks should be the next smallest possible \rightarrow so 2,3 and 4 . The last blank should the next largest \rightarrow so 6 .

Therefore, the blanks should be filled thus:

$$
\left[\begin{array}{|c}
9
\end{array} \square^{1} \times(\boxed{8}+\boxed{7})\right]-(\boxed{2} \times \boxed{3}+\boxed{4}-\boxed{6})
$$

12. 5 units $=15$

12 units $=(15 \div 5) \times 12$

$$
=36
$$

The number is 36 .

13. $1^{\text {st }}$ layer has 1 orange
$2^{\text {nd }}$ layer has 4 oranges
$3^{\text {rd }}$ layer has 9 oranges
$4^{\text {th }}$ layer has 16 oranges
$5^{\text {th }}$ layer has 25 oranges
$6^{\text {th }}$ layer has 36 oranges
Thus total is $1+4+9+16+25+36=\underline{91}$ oranges

14. (1) Rainbow
(2) Umbrella
(3) Coat
(4) Hat
15.

Property	Number of pieces
Exactly 1 line of symmetry	3
Exactly 2 line of symmetry	6
Exactly 3 line of symmetry	8

16.

		True	False
2.	None of the angles drawn are more than 90°.		\checkmark
3.	All of the triangles could have sides of different lengths.	\checkmark	
4.	All of the triangles could have 2 equal sides.	\checkmark	
5	All of the triangles could have 3 equal sides.		\checkmark

17. On a 365-days year, a date will fall on the next day of the week for the next year. In a leap year (366 days), the date will fall on the following day of the week for the next year.
From 3 Feb 1999 to 3 Feb 2020, there are (21×365) days +5 extra days due to the leap years. 21 is a multiple of 7 and so, if it had not been for the extra 5 days, 3 Feb 2020 would have been on a Wednesday as well. As it is, 5 days from Wednesday is Monday. Hence 3 Feb 2020 falls on a Monday.
18. Concept: $\frac{1}{3}$ of every part of the whole $=\frac{1}{3}$ of the whole

After $\frac{1}{3}$ of the pupils left to go to the hall, there were $\frac{2}{3}$ of them left.
After $\frac{1}{2}$ of these $\frac{2}{3}$ remaining pupils went off, there were $\frac{1}{3}$ of them left.
If $\frac{1}{3}$ of the class pupils is 7 pupils, then the whole class has $7 \times 3=21$ pupils
There were 21 pupils at the beginning.
19. Let S, M and L represent the number of small, medium and large marbles respectively.

For $\quad 1 \mathrm{M}+1 \mathrm{~L}=5 \mathrm{~S}$,
then $\quad 1 \mathrm{M}$ has to equal to 2 S and 1 L has to equal to 3 S
Since $\quad 5 L=9 S+3 M$
then $\quad 5 \mathrm{~L}=9 \mathrm{~S}+6 \mathrm{~S}=15 \mathrm{~S}$
5 large marbles weigh as much as 15 small marbles.
20. Since the answer starts with 2 it is clear that a can only be 2 or 3 since the answer ranges between 207 and 297.
79287 is not divisible by 221 whereas dividing 79287 by 321 gives 247 .
Hence, $a=3$ and $b=4$. The value of $a+b$ is $\underline{7}$.
21.

22. Make a table of possible lengths and breadths of rectangles whose perimeter is 118 cm :

Breadth	Length
1	58
2	57
3	56
\vdots	\vdots
$:$	\vdots
29	30

There are $\underline{29}$ possible different rectangles.
23. $\frac{1}{8}$ of the number of sheep $=\frac{1}{4}$ of the number of goats $=\frac{2}{5}$ of the number of horses
$\frac{2}{16}$ of the number of sheep $=\frac{2}{8}$ of the number of goats $=\frac{2}{5}$ of the number of horses
There were 16 units of sheep, 8 units of goats and 5 units of horses
$16+8+5=29$ units
29 units $=1450$ animals
1 unit = 50 animals
16 units $=800$ sheep
8 units $=400$ goats
5 units $=\underline{250 \text { horses }}$
24. The numbers guessed are

Kenneth's number:	1	5	3	4
Leonard's number:	4	0	5	8
Mike's number:	9	7	8	0

If the digit which is correct is in the $2^{\text {nd }}$ place, then the other correct digit can only be in the $4^{\text {th }}$ place. Similarly, if the digit which is correct is in the $3^{\text {rd }}$ place, then the other correct digit can only be in the $1^{\text {st }}$ place.
Hence, if 5 is correct, then 4 must be correct and 1 and 3 are wrong (from Kenneth's number); 0 and 8 are wrong (from Leonard's number). However, the remaining two possible digits, which are 9 and 7 are next to each other (from Mike's number), so 5 is not correct.

If 3 is correct, then 1 must be correct, and 5 and 4 are wrong (from Kenneth's number), and 0 and 8 are correct (from Leonard's number). However, 8 and 0 are next to each other (from Mike's number), so 3 is not correct.
This leaves 1 and 4 correct, and 5 and 3 are wrong (from Kenneth's number); 8 is correct (from Leonard's number); and 9 is correct (from Mike's number).

Therefore, the four digits making up James' secret code are 1, 4, 8 and 9 .
25.

Value of 3 sets $=135+96=\$ 231$
Value of 1 set $=231 \div 3=\$ 77$

$96-77=19$

$$
=19
$$

Mr Ang spent $\$ 19$.

