Primary 6 Solutions

Section A:

1. LCM of $2,3,4,5,6$ and $7=420$

Largest 4-digit multiple of $420=420 \times 23=9660$
The required number is $9660+1=\underline{9661}$
2. $v^{2}=4 \times 9=36$
$v=\underline{6}$
3. Let the mass of a pumpkin, a pineapple and a pomelo be $\boldsymbol{x}, \boldsymbol{y}$ and \boldsymbol{z} respectively.

To simplify the problem, remove 1 pumpkin from each plate.
We then have:

$2 y$	$2 z$	$x+y$
(A)	(B)	(C)

$$
\begin{aligned}
& y+z \\
& \text { (D) }
\end{aligned}
$$

Since $2 y$ is less than $2 z$, so y is less than z.
Since $2 \boldsymbol{z}$ is less than $\boldsymbol{x}+\boldsymbol{y}$, and \boldsymbol{y} is less than \boldsymbol{z}, then \boldsymbol{x} has to be more than \boldsymbol{z}.
Hence, \boldsymbol{y} is less than \boldsymbol{z}, which is less than \boldsymbol{x}.
Therefore, $y+z$ is less than $2 z$ but more than $2 y$, so D should be placed between A and B.
4. 81653
5. Since XV and XW are radii, then triangle VWX is an isosceles triangle and $\angle \mathrm{XVW}$ and $\angle \mathrm{VWX}$ are equal.
$\angle \mathrm{VWX}=142^{\circ} \div 2=71^{\circ}$ (exterior angle $=2$ interior opposite angles)
$\angle \mathrm{UYZ}=\underline{71^{\circ}}$ (corresponding angles)
6. Divide triangle PQR into 18 smaller similar right-angled triangles. 8 are shaded. Hence $\frac{8}{18}$ or $\frac{4}{9}$ of triangle PQR is shaded.
7.

Ratio of A to B is $\underline{9: 5}$.
8. Mark $\rightarrow 100$ units

Daniel $\rightarrow 125$ units
Jess $\rightarrow 80$ units
Daniel's 125 units $\rightarrow 100 \%$
Jess' 80 units $\rightarrow \frac{80}{125} \times 100 \%=64 \%$
$100 \%-64 \%=36 \%$
Jess received 36\% less than Daniel.
9. $\frac{1}{\frac{1}{2}}=1 \div \frac{1}{2}=1 \times 2=2$
$\frac{1}{2}+2=2 \frac{1}{2}$
$\left(2 \frac{1}{2}\right)^{2}=\left(\frac{5}{2}\right)^{2}=\frac{25}{4}=6 \frac{1}{4}$
10. 7 stickers

		\mathscr{E}				\mathscr{A}		
\mathscr{E}				\mathscr{B}				\mathscr{B}
		\mathscr{B}				\mathscr{B}		

Section B:

11. $1860 \div 4=465$
$1+2+3+\ldots+n=465$
$\frac{(1+n) \times n}{2}=465$
$(1+n) \times n=930$
$n=\underline{30}$
12. $100+102+103+104+105+106+107+108+110+111=1056 \mathrm{~kg}$ $=4 \times$ Total mass of the five boys
Therefore, the total mass of the five boys $=1056 \div 4=264 \mathrm{~kg}$
Arranging the boys in increasing order of mass and naming them a, b, c, d and e respectively, we can only know the following 4 equations for certain:

$$
\begin{aligned}
& a+b=100 \\
& a+c=102 \\
& c+e=110 \\
& d+e=111
\end{aligned}
$$

To find a :

$$
\begin{aligned}
& \text { Since }(a+b)+(d+e)+(a+c)=\text { Total }+a \\
& \text { Then } a=[(a+b)+(d+e)+(a+c)]-\text { Total } \\
& =(100+111+102)-264=49
\end{aligned}
$$

To find e :

$$
\begin{aligned}
& \text { Since }(a+b)+(d+e)+(c+e)=\text { Total }+e \\
& \text { Then } e=[a+b)+(d+e)+(c+e)]- \text { Total } \\
& =(100+111+110)-264=57
\end{aligned}
$$

Difference between heaviest and lightest boy $=57-49=\underline{8 \mathrm{~kg}}$
13. Total unshaded area $=16$ units

Fraction of figure unshaded
$=\frac{16}{20}=\frac{4}{5}$
$\frac{4}{5}$ of the figure is unshaded.

14. 30% boys $=10$ pupils $+40 \%$ girls
100% boys $+100 \%$ girls $=220$ pupils
30% boys $+30 \%$ girls $=66$ pupils
30% boys $=66$ pupils -30% girls
10 pupils $+40 \%$ girls $=66$ pupils -30% girls
70% girls $=56$ pupils
100% girls $=80$ pupils
$220-80=\underline{140 \text { boys }}$
15. $\frac{n+3}{n-1}=1 \frac{4}{n-1}$

For $\frac{n+3}{n-1}$ to be a whole number, $\frac{4}{n-1}$ has to be a whole number.
That is, $(n-1)$ can only be 1,2 or 4 . Therefore n can only be 2,3 or 5 .
The sum of all possible values of $n=2+3+5=\underline{10}$
16. Know that $\frac{1}{x}-\frac{1}{y}=\frac{y-x}{x y}$

When y is 1 more than x (that is, x and y are consecutive),
Then, $\frac{1}{x}-\frac{1}{y}=\frac{1}{x y}$
Since $3540=2 \times 2 \times 3 \times 5 \times 59$

$$
=60 \times 59
$$

Then, $x=\underline{59}, y=\underline{60}$
17. No. who ate only sausages $=19-1-4-6=8$

No. who did not eat sausages $=87-8=79$
No. who ate chicken wings but did not eat spring rolls $=79-58=21$
No. who only ate chicken wings $=21-6=15$
$x=54-(15+6+1)=32$
No. who only ate 1 type of food $=87-(6+1+4+32)=44$ children

18. $\angle \mathrm{BCD}=90^{\circ}+60^{\circ}=150^{\circ}$
$\angle \mathrm{CBD}=\left(180^{\circ}-150^{\circ}\right) \div 2=15^{\circ}$ (base \angle of isosceles triangle)
$\angle \mathrm{DBF}=90^{\circ}-15^{\circ}=75^{\circ}$
$\angle A B F=180^{\circ}-75^{\circ}=105^{\circ}$
$\angle \mathrm{BAF}=\left(180^{\circ}-105^{\circ}\right) \div 2=\underline{37.5^{\circ}}$ (base \angle of isosceles triangle)

19. Volume of 1 cube $=1512 \div 7=216 \mathrm{~cm}^{3}$

Length of each side $=\sqrt[3]{216}=6 \mathrm{~cm}$
Area of each face $=6 \times 6=36 \mathrm{~cm}^{2}$
Total number of faces $=5$ faces each of 6 cubes $=30$
Total surface area $=30 \times 36=1080 \mathrm{~cm}^{2}$

20. $76-74=2$
$(84-76) \div 2=4$
Gracie took 4 tests before the one she scored 84%.
Total of 5 tests $\rightarrow 76 \times 5=380$
If Gracie scored full marks for last test, total of 6 tests $\rightarrow 380+100=480$
$480 \div 6=80$
Her highest possible average is 80%.

Section C:

21. Plates left: $\frac{2}{5}=\frac{6}{15}, \frac{2}{5}$ of $60=24$

Bowls left: $\quad \frac{1}{3}=\frac{5}{15}$
$6+5=11$ units
11 units $+24=46$

11 units $=46-24=22$
1 unit $\rightarrow 2$
At first: 15 units +60 plates $\rightarrow(2 \times 15)+60=90$ plates at first.
22. red : blue
After 23 red balls removed:
1 : 2
Total $\rightarrow 3 x+23$
After 80 blue balls removed:
$5: 1$
Total $\rightarrow 6 y+80$
$3 x+23=6 y+80$
$3 x=6 y+57$
$x=2 y+19$
$x+23=5 y$
$2 y+19+23=5 y$
$3 y=42$
$y=14$
$5 y=14 \times 5=\underline{70}$ red balls in the box.
23. Considering worst case scenario, if he transfers 3 eggs of one colour (red) and 1 egg of another colour (green) to Hat 2, he now has in
Hat 2: 6 red, 4 green and 3 yellow
Hat 1: 0 red, 2 green and 3 yellow
Again considering the worst scenario, if he transfers all 3 yellow eggs first, then all 4 of the green eggs, he will need to transfer only 3 of the remaining 6 red eggs and he will have at least 3 of each colour in Hat 1. All in all, he needs to transfer $3+4+3=10$ eggs.
24. Ten boys played a total of $9+8+7+6+5+4+3+2+1=45$ games.

3 points were given for a win-lost outcome and 2 points were given for a draw.
$45 \times 3=135$ points would have been given out if there were no draws.
$135-125=10$ points
10 games were draws.
25. In 3 hours

A completed $3 \times \frac{1}{9}=\frac{1}{3}$ of mural
B completed $3 \times \frac{1}{10}=\frac{3}{10}$ of mural
$\frac{1}{3}+\frac{3}{10}=\frac{19}{30}$ of mural completed in 3 hours
$1-\frac{19}{30}=\frac{11}{30}$ more to be done by $\mathrm{B} \& \mathrm{C}$.

In 1 hour:
C painted $\frac{1}{12}$ of mural work.
B painted $\frac{1}{10}$ of mural work.
Total, in 1 hour, $B \& C$ painted
$\frac{1}{12}+\frac{1}{10}=\frac{11}{60}$ of mural.
Since $\frac{11}{30}=\frac{22}{60}$, and $\frac{11}{60}$ of the work took 1 hour, then $\frac{22}{60}$ of the work would take 2 hours.
Total time taken: $3+2=5$ hours

