1. $5 \mathrm{~A}+5 \mathrm{~B}=81$
$5 B+5 C=83$
$5 C+5 D=86$
$5 A-5 D=2$
$5 \mathrm{~A}+5 \mathrm{C}=86+2=88$
$5 A+5 B+5 C=(81+83+88) \div 2=126$
Number of students in $5 \mathrm{~A}=126-83=\underline{43}$
Number of students in 5B $=81-43=\underline{38}$
Number of students in 5C = 83-38=45
Number of students in 5D $=43-2=\underline{41}$
2. For $3 A B A B A$ to be divisible by $6,3 A B A B A$ must be divisible by 2 and 3 ,
that is, A is an even number ($0,2,4,6$ or 8), and $3+A+B+A+B+A$ is divisible by 3 .
Since $3+3 A+2 B$ is divisible by 3 , then $2 B$ must be divisible by 3 .
Hence B could be 0, 3, 6 or 9 .
Total possible combinations for A and $B=5 \times 4=20$
However, the numbers 300000 and 366666 cannot be included as in these cases, A is the same as B . Hence, the answer is $20-2=\underline{18}$
3. If David was telling the truth, then Andy and Chum would be telling the truth as well.

Since only 1 person was telling the truth, then Beng, Chum and David must all be lying, and so only Andy must be telling the truth.
Since Chum was lying when he said "it wasn't me", so Chum must be the robber.
4. Total mass of the boys $=41 \times 2$ units $=82$ units

Total mass of the girls $=35 \times 1$ unit 35 units
Total mass of boys and girls $=82+35=117$
$117 \div 3$ units $=39$
Average mass of the whole class is 39 kg .
5. $\angle \mathrm{OBC}=58^{\circ}$ and $\angle \mathrm{OCB}=58^{\circ}$ because $\triangle \mathrm{OCB}$ is isosceles,
$\angle \mathrm{OCA}=\angle \mathrm{OAC}=\angle \mathrm{y}$ because $\triangle \mathrm{OAC}$ is isosceles,
$\angle \mathrm{OBC}+\angle \mathrm{OCB}+\angle \mathrm{OCA}+\angle \mathrm{OAC}=180^{\circ}$ (Sum of angles of $\triangle \mathrm{ABC}$)
$58+58+y+y=180^{\circ}$
$2 \mathrm{y}=180^{\circ}-116^{\circ}$
$2 y=64^{\circ}$

$y=\underline{32^{\circ}}$
6.

$$
\begin{array}{rrr}
\text { Factors of } 84=1 & \times 84 \\
2 \times 42 & \text { Factors of } 70=1 \times 70 \\
3 \times 28 & 2 \times 35 & \text { Factors of } 30=1 \times 30 \\
4 \times 21 & & 2 \times 14 \\
& 7 \times 10 & \\
\hline
\end{array}
$$

Common factors of 84 and $70 \rightarrow 1,2,7$ and 14
Common factors of 84 and $30 \rightarrow 1,2,3$ and 6$\} 6 \times 14=84$
The length (between $84 \mathrm{~cm}^{2}$ and $70 \mathrm{~cm}^{2}$) is 14 cm .
The breadth (between $84 \mathrm{~cm}^{2}$ and $30 \mathrm{~cm}^{2}$) is 6 cm .
The height $=70 \div 14=5 \mathrm{~cm}$
Volume $=14 \times 6 \times 5=420 \mathrm{~cm}^{3}$
7. First cut $=\frac{2}{5}=\frac{8}{20}$

Remaining length $=\frac{1}{4}=\frac{5}{20}$

$20-8-5=7$ units
7 units $=14 \mathrm{~m}$
5 units $=(14 \div 7) \times 5=10 \mathrm{~m}$
The remaining length is 10 m .
8. Let the initial mass be 1 unit.

After 1 week, it is $1 \times 1.2=1.2$ units;
After 2 weeks, it is $1.2 \times 1.2=1.44$ units;
After 3 weeks, it is $1.44 \times 1.2=1.728$ units
After 4 weeks, it is $1.728 \times 1.2=2.48832$ units
Thus after just less than 4 weeks, the chicken doubled their mass.
The chicken farm keeps the chicken for a minimum of 4 weeks.
9. $\frac{1}{A}+\frac{7}{3 A}$
$=\frac{3+7}{3 A}=\frac{5}{6}$
$=\frac{10}{3 A}=\frac{10}{12}$
Therefore, $3 \mathrm{~A}=12$, and $\mathrm{A}=\underline{4}$
10. Highest possible score $=20 \times 4=80$

For each miss, the score drops by $6+4=10$ points.
$80-30=50$
$50 \div 10=5$
Paul missed 5 times.
11. Number of different possible ways $=\underline{19}$

12.

| | 6 A | 6 B | 6 C | Dancing | Playing
 Piano | Baking |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Emma | \checkmark | \times | \times | \times | \checkmark | \times |
| Faith | \times | \checkmark | \times | \times | \times | \checkmark |
| Gina | \times | \times | \checkmark | \checkmark | \times | \times |

Since Faith, who is not from 6C, does not like playing the piano, she is also therefore not in class 6A. So, Faith is from 6B.
Since the girl who likes to dance is not from 6B, so Faith's hobby is not dancing either. Therefore, Faith is from 6B and likes baking.
Emma's hobby must be playing the piano and is from 6A, and Gina must be from 6 C and likes dancing.
13. The least common multiple of 12,15 and 20 is 60 .

$$
\begin{aligned}
& 60 \div 12=5(\text { group } A) \\
& 60 \div 15=4(\text { group B) } \\
& 60 \div 20=3 \text { (group C) }
\end{aligned}
$$

Ratio of monkeys in groups A, B and C is $5: 4: 3$
14. 20% of the males $=5$ people $+30 \%$ of females
100% of males and 100% of females $=250$ people
20% of males and 20% of females $=20 \%$ of $250=50$ correspondents
20% of males $=50$ people -20% of females
5 people $+30 \%$ of females $=50$ people -20% of females
50% of females $=45$ people
100% of females $=90$ people
The number of males that took part in the survey $=250-90=\underline{160}$
15. $\left(1-\frac{1}{5}-\frac{1}{4}-\frac{1}{8}-\frac{1}{8}\right)$ of the apples $=5+7$ apples
$\frac{12}{40}$ of the apples $=12$ apples
Number of apples at first $=\underline{40}$
16. Company A:

Total salaries for 4 years $=30000+32000+34000+36000=\$ 132000$
Company B:
First year salaries $=2000 \times 12=\$ 24000$
Second to fourth year salaries $=(2000 \times 36)+100+200+300$. $+3600$

$$
\begin{aligned}
& =\$ 72000+\frac{3700 \times 36}{2} \\
& =\$ 138600
\end{aligned}
$$

Total salary over 4 years $=24000+138600=\$ 162600$
Company B will pay him \$30,600 more.
17. Let $A+B+C=45 \times 3$,
$A+B+D=60 \times 3$,
$A+C+D=65 \times 3$, and
$B+C+D=70 \times 3$
$3 A+3 B+3 C+3 D=(45+60+65+70) \times 3$
Average of A, B, C and $D=(45 \times 3+60 \times 3+65 \times 3+70 \times 3) \div 3 \div 4=\underline{60}$
18. Sum of angles of a triangle $=180^{\circ}=30^{\circ}+\left(180^{\circ}-m\right)+\left(180^{\circ}-n\right)$ $180^{\circ}=390^{\circ}-m-n$
$n=210^{\circ}-m$
Since $m=\frac{2}{3} n$ or $n=\frac{3}{2} m$

then

$$
\begin{aligned}
& \frac{3}{2} m=210^{\circ}-m \\
& \frac{5}{2} m=210^{\circ} \\
& m=84^{\circ}
\end{aligned}
$$

19. Since the area of triangle FED is $15 \mathrm{~cm}^{2}$ smaller than triangle $A B F$, then the area of triangle BCE is smaller than area of rectangle ABCD by $15 \mathrm{~cm}^{2}$.
Therefore, $\quad \frac{1}{2} \times 12 \times(E D+5)+15=12 \times 5$

$$
\begin{aligned}
& 6 E D+30+15=60 \\
& 6 E D=60-45=15 \\
& E D=2.5 \mathrm{~cm}
\end{aligned}
$$

20. 30% of $\operatorname{Jar} \mathrm{B}=24 \%$ of Jar C

This means that if there are 10 units in Jar B,
then 3 units of $B=24 \%$ of C
1 unit of $B=8 \%$ of C
10 units of $B=80 \%$ of C
100% of $C=12.5$ units of B
Also, 3 units of $B=50 \%$ of A
100% of $A=6$ units of B

	$A: B: C$
$=$	$6: 10: 12.5$
$=$	$12: 20: 25$

$25-20=5$ more units in C than in B
Percentage $=\frac{5}{20} \times 100 \%=\underline{25 \%}$
21. $\frac{3}{7}$ of tank $\rightarrow 2 \frac{2}{5}$ litres
$\frac{3}{4}$ of tank $=\frac{3}{4} \div \frac{3}{7} \times \frac{12}{5}$ litres
$=\frac{3}{4} \times \frac{7}{3} \times \frac{12}{5}$ litres
$=\frac{21}{5}$ litres
$\frac{12}{5}$ litres $\rightarrow \frac{4}{5}$ hours
$\frac{21}{5}$ litres $\rightarrow \frac{21}{5} \div \frac{12}{5} \times \frac{4}{5}$ hours
$=\frac{21}{5} \times \frac{5}{12} \times \frac{4}{5}$ hours
$=\frac{7}{5}$ hours $=1 \frac{2}{5}$ hours
$1 \frac{2}{5}$ hours $=\frac{7}{5} \times 60=\underline{84} \mathbf{~ m i n}$
22. Luke $\rightarrow 1$ unit

Mary $\rightarrow 4$ units
Doris $\rightarrow \frac{1}{10} \times(1+4)$ units $=\frac{1}{2}$ unit
Grace $\rightarrow 4$ units
John $\rightarrow 4$ units less 14 hours
$\left(1+4+\frac{1}{2}+4+4\right)$ units $=(175+14)$ hours
$13 \frac{1}{2}$ units $=189$ hours
1 unit = 14 hours
John worked (4×14) - $14=42$ hours
Doris worked $14 \div 2=7$ hours
Ratio of hours John worked to hours Doris worked is $42: 7$ or $6: 1$
23. Since each of them were each given numbers 1 to 5 , if Peter was told any of the following numbers, he would be able to tell what the two numbers that were picked were:

$1 \rightarrow 1 \times 1$	The two numbers are 1 and 1.
$2 \rightarrow 1 \times 2$	The two numbers are 1 and 2.
$3 \rightarrow 1 \times 3$	The two numbers are 1 and 3.
$5 \rightarrow 1 \times 5$	The two numbers are 1 and 5.
$6 \rightarrow 2 \times 3$	The two numbers are 2 and 3.
$7 \rightarrow 1 \times 7$	The two numbers are 1 and 7.
$8 \rightarrow 2 \times 4$	The two numbers are 2 and 4.
$9 \rightarrow 3 \times 3$	The two numbers are 3 and 3.
$10 \rightarrow 2 \times 5$	The two numbers are 2 and 5.
$12 \rightarrow 3 \times 4$	The two numbers are 3 and 4.
$15 \rightarrow 3 \times 5$	The two numbers are 3 and 5.
$16 \rightarrow 4 \times 4$	The two numbers are 4 and 4.
$20 \rightarrow 4 \times 5$	The two numbers are 4 and 5.
$25 \rightarrow 5 \times 5$	The two numbers are 5 and 5.

(Products 11, 13, 14, 17, 18, 19, 21, 22, 23 and 24 cannot be formed.)
The only product that is ambiguous is 4 since 4 could be equal to 1×4 or 2×2. Therefore, when Peter said that he did not know the numbers, Sally would be able to know that the product Peter was told had to be 4.
Since Sally said that the sum she was told is larger than the product Peter was told, the two numbers that were picked had to be 1 and $4(s u m=5)$ and not 2 and $2(s u m=4)$.
24.

+	1	2	3	4	5	6
1	2	3	4	5	6	7
2	3	4	5	6	7	8
3	4	5	6	7	8	9
4	5	6	7	8	9	10
5	6	7	8	9	10	11
6	7	8	9	10	11	12

As can be seen in the table, there is only 1 way to get the sum of $2 ; 2$ ways to get the sum of $3 ; 3$ ways to get the sum of 4 and so on. The sum of 7 can be formed in 6 ways, hence it is the most likely total.
25. First row: $1+2+3+\ldots+50=\frac{(50+1) \times 50}{2}=1275$

Second row: $2+3+4+\ldots+51=\frac{(2+51) \times 50}{2}=1325$
:
Last row: $50+51+52+\ldots+99=\frac{(50+99) \times 50}{2}=3725$
Total $=\frac{(1275+3725) \times 50}{2}=\underline{125000}$

